Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 29(15): 22515-22530, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1750808

ABSTRACT

Escalating emissions of several air pollutants over South Asia could play a detrimental role in the regional and global atmosphere. Therefore, it is necessary to investigate these emissions within the boundary layer and at higher heights utilizing satellite data that are more inclusionary, where limited in situ observations are available. Here, we utilize the Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instruments (OMI), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment (GOME-2) hyperspectral satellite data to assess the changes in emission sources during Indian lockdown with a primary focus on the tropospheric profiles of ozone and carbon monoxide (CO). A significant reduction (> 20%) in the tropospheric ozone was seen over northern and northeast regions compared to 2018, while a dramatic increase (> 20%) compared to 2019 was seen. The subtropical dynamics mainly contributed to the increased ozone over the northern region. An analysis of the ozone production regime showed mostly NO2 limited regime over the major part of India and VOC limited regime over thermal power plants regions. Unlike in the boundary layer, where CO showed reduction (15-20%), CO profiles showed a consistent increase (as high as 31%) in the free troposphere over the majority of cities and thermal power plants. The CO total column also showed an increase (~ 20%) over central and western India and a slight decrease (5%) over northern India. Similar to CO, an increase (~ 15%) of NO2 column over the western region was observed particularly compared to 2019. However, unlike ozone and CO, reduction of tropospheric NO2 columns was seen over the major part of India, with the highest reduction over northern regions (20-52%). Furthermore, homogeneous yearly differences (> 30%) between OMI and TROPOMI NO2 observations were also seen distinctly over the remote areas. Contrary to surface-based studies, the present study shows an increase in CO, ozone (decrease), and NO2 at several locations and in the free troposphere during the lockdown.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Air Pollutants/analysis , Communicable Disease Control , Environmental Monitoring , Humans , India , Nitrogen Dioxide/analysis , Ozone/analysis , Remote Sensing Technology , SARS-CoV-2
2.
Current Science (00113891) ; 120(2):341-351, 2021.
Article in English | Academic Search Complete | ID: covidwho-1052569

ABSTRACT

In this study, we assess the response of ambient aerosol black carbon (BC) mass concentrations and spectral absorption properties across Indian mainland during the nation-wide lockdown (LD) in connection with the Coronavirus Disease 19 (COVID-19) pandemic. The LD had brought near to total cut-off of emissions from industrial, traffic (road, railways, marine and air) and energy sectors, though the domestic emissions remained fairly unaltered. This provided a unique opportunity to delineate the impact of fossil fuel combustion sources on atmospheric BC characteristics. In this context, the primary data of BC measured at the national network of aerosol observatories (ARFINET) under ISRO-GBP are examined to assess the response to the seizure of emissions over distinct geographic parts of the country. Results indicate that average BC concentrations over the Indian mainland are curbed down significantly (10–40%) from prelockdown observations during the first and most intense phase of lockdown. This decline is significant with respect to the long-term (2015–2019) averaged (climatological mean) values. The drop in BC is most pronounced over the Indo-Gangetic Plain (>60%) and north-eastern India (>30%) during the second phase of lockdown, while significant reduction is seen during LD1 (16–60%) over central and peninsular Indian as well as Himalayan and sub-Himalayan regions. Despite such a large reduction, the absolute magnitude of BC remained higher over the IGP and north-eastern sites compared to other parts of India. Notably, the spectral absorption index of aerosols changed very little over most of the locations, indicating the still persisting contribution of fossil-fuel emissions over most of the locations. [ABSTRACT FROM AUTHOR] Copyright of Current Science (00113891) is the property of Indian Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECTION OF CITATIONS
SEARCH DETAIL